Pricing

Pricing Relationship with Dated Options

The price of the perpetual option with continuous funding can be expressed as a continuous sum of dated options, weighted exponentially according to the time to expiry of the dated options :

Pperpetual=1T0eτTPdated(τ) dτP_{perpetual}=\frac{1}{T}*\int_0^{\infty}e^{-\frac{\tau}{T}}*P_{dated}(\tau)~d\tau

where TT is the funding period of the option

Pricing Functions

Under Black Scholes, the continuous nature of the option results in closed-form solution for the price (this is not the case in the discrete case) under the assumption that the short-term IV σ\sigma is flat for a given strike.

The price of a perpetual option depends on :

  • Type of the option (call/put)
  • SS : Spot Price of the underlying asset
  • KK : Strike Price of the option
  • σ\sigma : The volatility of the underlying asset
  • rr : The annualised instantaneous interest rate. Paradex derives this from the perpetual future funding rate FR\text{FR}. The relationship is : r=1TFutureFR1+FRr=\frac{1}{T_{Future}}*\frac{\text{FR}}{1+\text{FR}} where TFuture=8243650.00091324T_{Future}=\frac{8}{24*365}\approx 0.00091324 corresponds to the 8-hour funding period of the perpetual future
  • TT : The funding period of the option. Currently set to 5 days, i.e. T5365=0.01369863014T\approx \frac{5}{365}=0.01369863014

Price of a Perpetual Call Option

C={SAKB+(SK1+rT)if SKSAKBif S<K C = \begin{cases} S*A-K*B+(S-\frac{K}{1+r*T}) & \text{if }S\ge K\\ S*A-K*B & \text{if }S< K \end{cases}

Price of a Perpetual Put Option

P={SAKBif SKSAKB(SK1+rT)if S<K P = \begin{cases} S*A-K*B & \text{if }S\ge K\\ S*A-K*B-(S-\frac{K}{1+r*T}) & \text{if }S< K \end{cases}

where :

A={12 (SK)12(1+u) p(1u1)if SK12 (SK)12(1u) p(1u+1)if S<K A = \begin{cases} \frac{1}{2}~(\frac{S}{K})^{-\frac{1}{2}(1+u)~p}*(\frac{1}{u}-1) & \text{if }S\ge K\\ \frac{1}{2}~(\frac{S}{K})^{-\frac{1}{2}(1-u)~p}*(\frac{1}{u}+1) & \text{if }S< K \end{cases} B={12 (1+rT) (SK)12(1+ω) q(1ω1)if SK12 (1+rT) (SK)12(1ω) q(1ω+1)if S<K B = \begin{cases} \frac{1}{2~(1+r*T)}~(\frac{S}{K})^{\frac{1}{2}(1+\omega)~q}*(\frac{1}{\omega}-1) & \text{if }S\ge K\\ \frac{1}{2~(1+r*T)}~(\frac{S}{K})^{\frac{1}{2}(1-\omega)~q}*(\frac{1}{\omega}+1) & \text{if }S< K \end{cases} p=1+2rσ2p=1+\frac{2*r}{\sigma^2} q=12rσ2q=1-\frac{2*r}{\sigma^2} u=1pp2+8σ2Tu=\frac{1}{p}\sqrt{p^2+\frac{8}{\sigma^2*T}} ω=1qq2+8(1+rT)σ2T\omega=-\frac{1}{q}\sqrt{q^2+\frac{8*(1+r*T)}{\sigma^2*T}}

Greeks

Delta

Δcall={ΔTV+1if SKΔTVif S<K \Delta_{call} = \begin{cases} \Delta_{TV}+1 & \text{if }S\ge K\\ \Delta_{TV} & \text{if }S< K \end{cases} Δput={ΔTVif SKΔTV1if S<K \Delta_{put} = \begin{cases} \Delta_{TV} & \text{if }S\ge K\\ \Delta_{TV}-1 & \text{if }S< K \end{cases}

where ΔTV\Delta_{TV} is the delta of the Time Value and is equal to :

ΔTV={A  (1(1+u) p2)B  KS (1+ω) q2if SKA  (1(1u) p2)B  KS (1ω) q2if S<K \Delta_{TV} = \begin{cases} A~*~(1-\frac{(1+u)~p}{2})-B~*~\frac{K}{S}~\frac{(1+\omega)~q}{2} & \text{if }S\ge K\\ A~*~(1-\frac{(1-u)~p}{2})-B~*~\frac{K}{S}~\frac{(1-\omega)~q}{2} & \text{if }S< K \end{cases}

Gamma

Γ={AS [(1+u) p21].(1+u) p2B.KS2 [(1+ω)2.q1].(1+ω)2.qif SKAS [(1u) p21].(1u) p2B.KS2 [(1ω)2.q1].(1ω)2.qif S<K \Gamma = \begin{cases} \frac{A}{S}~[\frac{(1+u)~p}{2}-1].\frac{(1+u)~p}{2}-\frac{B.K}{S^2}~[\frac{(1+\omega)}{2}.q-1].\frac{(1+\omega)}{2}.q & \text{if }S\ge K\\ \frac{A}{S}~[\frac{(1-u)~p}{2}-1].\frac{(1-u)~p}{2}-\frac{B.K}{S^2}~[\frac{(1-\omega)}{2}.q-1].\frac{(1-\omega)}{2}.q & \text{if }S< K \end{cases}

Vega

ν=SδAδσKδBδσ\nu=S*\frac{\delta A}{\delta \sigma}-K*\frac{\delta B}{\delta \sigma}

where

δAδσ={4Aσ3((ruprpu2p2uT)(1u2up2log(SK))                           + r(1+u)2log(SK))if SK4Aσ3((ruprpu2p2uT)(1u2+u+p2log(SK))                           + r(1u)2log(SK))if S<K \frac{\delta A}{\delta \sigma} = \begin{cases} \frac{4*A}{\sigma^3}*\Big(\big(\frac{r*u}{p}-\frac{r}{p*u}-\frac{2}{p^2 * u*T}\big)*\big(\frac{1}{u^2-u}-\frac{p}{2}*\log(\frac{S}{K})\big)~\\~~~~~~~~~~~~~~~~~~~~~~~~~~+~\frac{r*(1+u)}{2}*\log(\frac{S}{K})\Big) & \text{if }S\ge K\\ \frac{4*A}{\sigma^3}*\Big(\big(\frac{r*u}{p}-\frac{r}{p*u}-\frac{2}{p^2 * u*T}\big)*\big(\frac{-1}{u^2+u}+\frac{p}{2}*\log(\frac{S}{K})\big)~\\~~~~~~~~~~~~~~~~~~~~~~~~~~+~\frac{r*(1-u)}{2}*\log(\frac{S}{K})\Big) & \text{if }S< K \end{cases} δBδσ={4Bσ3((rωq+rqω+2q2ωT)(1ω2ω+q2log(SK))                           + r(1+ω)2log(SK))if SK4Bσ3((rωqrqω+2q2ωT)(1ω2+ω+q2log(SK))                           + r(1ω)2log(SK))if S<K \frac{\delta B}{\delta \sigma} = \begin{cases} \frac{4*B}{\sigma^3}*\Big(\big(\frac{-r*\omega}{q}+\frac{r}{q*\omega}+\frac{2}{q^2 * \omega*T}\big)*\big(\frac{1}{\omega^2-\omega}+\frac{q}{2}*\log(\frac{S}{K})\big)~\\~~~~~~~~~~~~~~~~~~~~~~~~~~+~\frac{r*(1+\omega)}{2}*\log(\frac{S}{K})\Big) & \text{if }S\ge K\\ \frac{4*B}{\sigma^3}*\Big(\big(\frac{r*\omega}{q}-\frac{r}{q*\omega}+\frac{2}{q^2 * \omega*T}\big)*\big(\frac{1}{\omega^2+\omega}+\frac{q}{2}*\log(\frac{S}{K})\big)~\\~~~~~~~~~~~~~~~~~~~~~~~~~~+~\frac{r*(1-\omega)}{2}*\log(\frac{S}{K})\Big) & \text{if }S< K \end{cases}